RbMnFe(CN)₆の光誘起相転移の XAFS

横山利彦¹,所裕子²,大越慎一²,橋本和仁²,岡本薫³,太田俊明³

1分子研, 2東大先端研, 3東大理

yokoyama@ims.ac.jp

<u>はじめに</u> プルシアン類似化合物はさまざまな興味深い磁気特性を示すが、特に光誘起相転移による 自発磁化の発現・消失などの現象は注目に値する。我々はこれまで Na_{0.4}Co_{1.3}Fe(CN)₆ [1], Cs_{0.8}Co_{1.1} [W(CN)₈](3-cyanopyridine)_{1.9} [2]の光誘起相の電子状態・局所構造を XAFS により検討してきた。 RbMnFe(CN)₆系は、熱によるスピン転移を T_{c} =231 K (降温時), T_{c} =304 K (昇温時)で起こし、低温相は

磁化率の小さい面心正方,高温相は磁化率の大きい fccである[3]。さらに,T_c=12K以下では,強磁性転移 があり,強磁性相は光照射On/OFFにより消磁/磁化の 見事な応答性を示す。本研究では,この系のMn,Fe, Rb-K 吸収端 XAFS を測定し,光誘起相の電子状態と 低温相・高温相・光誘起相の局所構造を解析した。 <u>実験</u> RbMnFe(CN)₆系低温相・高温相・光誘起相の Mn,Fe, Rb-K 吸収端 XAFS は,KEK-PF BL12Cにおい て測定した。光照射はNd:YAGレーザー(CW,532 nm) により行い,試料はなるべく可視光が透過するよう薄 くし,30Kにおいて可視光を照射しながらLytle検出 器による蛍光収量法で測定した。低温相・高温相はそ れぞれ 30 K, 300 K において透過・蛍光法の両方で測 定した。

<u>XANES</u> 図1に Fe-K吸収端 XANES の吸収端前の拡大図を 示した。図中 で示したピークは Fe1s から 3d への遷移に対 応している。30 K での RbMnFe(CN)₆は光照射前にこのピー クが1本であるが,照射後2本に分裂し,光誘起転移が生 じていることがわかる。この分裂は結晶場分裂によるもの で,図1に示した標準試料との比較から,低温相はFe(II) d^5 LS (low spin, S=0),光照射相は室温相と同じく Fe(II) d^5 LS (S=1/2)と結論できる。図2,3 に Mn-K 吸収端 XANES を示し た。図2 から光照射により大きな変化が生じ,光照射相は やはり高温相と酷似している。図3 の吸収端前の拡大図で は,図中 で示した概ね Mn1s から 3d への遷移に帰属できる ピークが,光照射前では2本に分裂し,照射後1本となっ ている。この分裂は交換分裂によるもので,光照射前は Mn(III) d^4 HS (high spin, S=2)を示唆し,光照射後は高温相と

同じく Mn(II) d⁵HS (S=5/2)であるといえる。低温相・高温相の XANES の結論は X 線発光分析の報告[4]と一致している。結 局,光照射により Fe(II)から Mn(III)への電荷移動を伴うスピ ン転移が生じ,これは熱誘起と同じであると結論できる。 <u>EXAFS</u> Mn-K吸収端の k³ (k)とフーリエ変換を図4に示した。 この系では定性的な構造は他のプルシアンブルー化合物の類 推から,Fe 周辺で Fe(CN)₆Mn₆,Mn 周辺で Mn(NC)₆Fe₆である ことがわかっている。したがって,概ね 1-2 Å のピークが Mn-N,2-3 Å が Mn-C,4-5.3 Å が Mn-Fe に対応している。高配 位シェルが多重散乱のため強調されていることから, Mn-N-C-Fe がほぼ直線構造であることが確認できる。カー ブ・フィッティングの結果を表 1 に示した。Mn は距離の異 なる 2 種類のシェルがあった(配位数比を表中に示した)。

高温相は概ね距離の長い Mn-N 結合を形成し, II 価である といえる。やや残った短い距離の寄与は低温相が若干混ざっ たと思われる。低温相は Mn(III)N₆が Jahn-Teller 歪により, 4

図3 Mn-K吸収端 XANES の吸収端前拡 大図。↓で示したピークは概ね Mn1s から 3d への遷移に対応している。

つの短い結合と2つの長い結合をもつと解釈される。Mn(III)の Jahn-Teller 歪は通常生じるものであり, これがX線回折での正方歪の由来である。光照射相はやはり高温相と同一と思われる。また,Fe-Mn, Mn-Fe 距離は高温相・低温相とも格子定数の半分に対応している。いずれも XANES の結果を支持する。 <u>論点</u> 方法論的には XANES による Mn(II)/Mn(III)の同定と FEFF8 による Mn-K 吸収端 XANES シミュ レーション(紙面の都合で割愛)を紹介するので、この点を特に議論したい。

文献

- T. Yokoyama *et al.*, *Phys. Rev.* B60, 9340 (1999).
 T. Yokoyama *et al.*, *Phys. Rev.* B65, 064438 (2002).
 S. Ohkoshi *et al.*, *J. Phys. Chem.* 106, 2423 (2002).
- [4] T. Iwazumi, S. Ohkoshi et al., private communications.

表1	EXAFS	解析によ	ころ	原子	間距離	(Å)₀	0P	内は誤差
----	-------	------	----	----	-----	------	----	------

相	高温相	低温相	光誘起相
Mn short/long 配位数比	1.7 / 4.3	3.5 / 2.5	1.4 / 4.6
Fe-C 1.914	4(3)	1.897(4)	1.93(2)
Fe-N 3.04	5(4)	3.034(3)	3.05(1)
Fe-Mn (short)	5.02(1)	5.014(5)	NA
Fe-Mn (long)	5.26(1)	5.24(3)	NA
Mn-N (short)	1.964(9)	1.964(8)	1.92(2)
Mn-N (long)	2.221(6)	2.21(1)	2.190(9)
Mn-C (short)	3.13(2)	3.14(2)	3.11(6)
Mn-C (long)	3.38(1)	3.40(3)	3.35(2)
Mn-Fe (short)	5.00(2)	5.02(2)	5.09(60)
Mn-Fe (long)	5.28(1)	5.26(8)	5.29(8)

図 4 Mn-*K* 吸収端 EXAFS 関数 k³ (k)とその フーリエ変換: (a) 高温相, (b) 低温相, (c) 光 照射相。いずれも蛍光法のデータ。